On Chosen Target Forced Prefix preimage-resistance

Michal Rjaško

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics
Department of Computer Science
rjasko@dcs.fmph.uniba.sk

June 23, 2009
Hash function basics

- Hash function, in general, is a function $F : \mathcal{M} \rightarrow \mathcal{Y}$, where $|\mathcal{M}| >> |\mathcal{Y}|$.
 - We consider only functions $F : \{0, 1\}^* \rightarrow \{0, 1\}^y$.

- Cornerstones of current cryptography due to many applications:
 - Digital signatures
 - Message authentication
 - Password storage
 - Data integrity
 - ...

- Many different applications bring many different security properties that cryptographic hash functions should preserve.
Hash function basics

- Hash function, in general, is a function $F : \mathcal{M} \rightarrow \mathcal{Y}$, where $|\mathcal{M}| >> |\mathcal{Y}|$.
 - We consider only functions $F : \{0, 1\}^* \rightarrow \{0, 1\}^y$.

- Cornerstones of current cryptography due to many applications:
 - Digital signatures
 - Message authentication
 - Password storage
 - Data integrity
 - ...

- Many different applications bring many different security properties that cryptographic hash functions should preserve.
Hash function properties

Basic properties of every “good” hash function:

- **Preimage resistance**
 - for given image Y it is hard to find message M: $F(M) = Y$.

- **Second-preimage resistance**
 - for given message M it is hard to find message $M' \neq M$: $F(M) = F(M')$.

- **Collision resistance**
 - it is hard to find two different messages M, M': $F(M) = F(M')$.
Hash function family

\(H : \{0, 1\}^k \times \{0, 1\}^* \rightarrow \{0, 1\}^y. \)

- Preimage resistance:
 \(\text{Adv}_{H}^{\text{Pre}[\lambda]}(A) = \Pr \left[K \leftarrow K; M \leftarrow \{0, 1\}^\lambda; Y \leftarrow H_K(M); M' \leftarrow A(K, Y) : H_K(M') = Y \right] \)

- Second-preimage resistance:
 \(\text{Adv}_{H}^{\text{Sec}[\lambda]}(A) = \Pr \left[K \leftarrow K; M \leftarrow \{0, 1\}^\lambda; M' \leftarrow A(K, M) : (M \neq M') \land (H_K(M) = H_K(M')) \right] \)

- Collision resistance:
 \(\text{Adv}_{H}^{\text{Coll}}(A) = \Pr \left[K \leftarrow K; (M, M') \leftarrow A(K) : (M \neq M') \land (H_K(M) = H_K(M')) \right] \)

Everywhere and always versions – maximize the advantage over all keys (always) or messages (everywhere) – aPre, ePre, aSec, eSec

- maximizing Coll advantage makes no sense
Hash function family

\[H : \{0, 1\}^k \times \{0, 1\}^* \to \{0, 1\}^y. \]

- Preimage resistance:
 \[\text{Adv}_{H}^{\text{Pre}[\lambda]}(A) = \Pr \left[K \overset{\$}{\leftarrow} \mathcal{K}; M \overset{\$}{\leftarrow} \{0, 1\}^\lambda; Y \leftarrow H_K(M); M' \leftarrow A(K, Y) : H_K(M') = Y \right] \]

- Second-preimage resistance:
 \[\text{Adv}_{H}^{\text{Sec}[\lambda]}(A) = \Pr \left[K \overset{\$}{\leftarrow} \mathcal{K}; M \overset{\$}{\leftarrow} \{0, 1\}^\lambda; M' \leftarrow A(K, M) : (M \neq M') \land (H_K(M) = H_K(M')) \right] \]

- Collision resistance:
 \[\text{Adv}_{H}^{\text{Coll}}(A) = \Pr \left[K \overset{\$}{\leftarrow} \mathcal{K}; (M, M') \leftarrow A(K) : (M \neq M') \land (H_K(M) = H_K(M')) \right] \]

Everywhere and always versions – maximize the advantage over all keys (always) or messages (everywhere) – aPre, ePre, aSec, eSec

- maximizing Coll advantage makes no sense
Hash function family

\[H : \{0, 1\}^k \times \{0, 1\}^* \rightarrow \{0, 1\}^y. \]

- Preimage resistance:
 \[\text{Adv}^{\text{Pre}[\lambda]}_H(A) = \Pr \left[K \leftarrow \mathcal{K}; M \leftarrow \{0, 1\}^\lambda; Y \leftarrow H_K(M); M' \leftarrow A(K, Y) : H_K(M') = Y \right] \]

- Second-preimage resistance:
 \[\text{Adv}^{\text{Sec}[\lambda]}_H(A) = \Pr \left[K \leftarrow \mathcal{K}; M \leftarrow \{0, 1\}^\lambda; M' \leftarrow A(K, M) : (M \neq M') \land (H_K(M) = H_K(M')) \right] \]

- Collision resistance:
 \[\text{Adv}^{\text{Coll}}_H(A) = \Pr \left[K \leftarrow \mathcal{K}; (M, M') \leftarrow A(K) : (M \neq M') \land (H_K(M) = H_K(M')) \right] \]

Everywhere and always versions – maximize the advantage over all keys (always) or messages (everywhere) – \(a\text{Pre}, e\text{Pre}, a\text{Sec}, e\text{Sec} \)

- maximizing Coll advantage makes no sense
Nostradamus attack

Created by Kelsey and Kohno, 2006.

- Applies to Merkle-Damgård hash functions.
- Attack scenario (let F be some hash function):
 1. Nostradamus provides a hash Y of some predictions, e.g. closing stock prices of S&P500.
 2. The prices become public.
 3. Nostradamus has to publish a message M containing the exact closing prices and possibly some other (uncertain) predictions, where $F(M) = Y$.
Nostradamus attack

Created by Kelsey and Kohno, 2006.

- Applies to Merkle-Damgård hash functions.
- Attack scenario (let F be some hash function):
 1. Nostradamus provides a hash Y of some predictions, e.g. closing stock prices of S&P500.
 2. The prices become public.
 3. Nostradamus has to publish a message M containing the exact closing prices and possibly some other (uncertain) predictions, where $F(M) = Y$.
Nostradamus attack

Nostradamus

image Y

suffix M

prefix P

Challenger

prefix P

suffix M

F

? image Y
Chosen Target Forced Prefix preimage resistance

- Property that guarantees h.f. security against Nostradamus attack
- Chosen Target – the image Y; Forced Prefix – the prefix P
- Formal definition:

$$\text{Adv}_{H}^{\text{CTFP}[\lambda]}(A) = \Pr \left[K \leftarrow \mathcal{K}; (Y, S) \leftarrow A(K); P \leftarrow \{0, 1\}^\lambda; \\ M \leftarrow A(P, S) : H_K(P \parallel M) = Y \right]$$

- always CTFP preimage resistance:

$$\text{Adv}_{H}^{\text{aCTFP}[\lambda]}(A) = \max_{K \in \mathcal{K}} \left(\Pr \left[(Y, S) \leftarrow A; P \leftarrow \{0, 1\}^\lambda; \\ M \leftarrow A(P, S) : H_K(P \parallel M) = Y \right] \right)$$
Chosen Target Forced Prefix preimage resistance

- Property that guarantees h.f. security against Nostradamus attack
- Chosen Target – the image Y; Forced Prefix – the prefix P
- Formal definition:

$$\text{Adv}_{H}^{\text{CTFP}[\lambda]}(A) = \Pr \left[K \xleftarrow{\$} \mathcal{K}; (Y, S) \leftarrow A(K); P \xleftarrow{\$} \{0, 1\}^{\lambda};
M \leftarrow A(P, S) : H_{K}(P || M) = Y \right]$$

- always CTFP preimage resistance:

$$\text{Adv}_{H}^{a\text{CTFP}[\lambda]}(A) = \max_{K \in \mathcal{K}} \left(\Pr \left[(Y, S) \leftarrow A; P \xleftarrow{\$} \{0, 1\}^{\lambda};
M \leftarrow A(P, S) : H_{K}(P || M) = Y \right] \right)$$
Other properties analyzed in our work:

- Message authentication codes (unforgeability) (MAC):
 \[\text{Adv}^{\text{MAC}}_H (A) = \Pr [K \leftarrow \mathcal{K}; (M, Y) \leftarrow A^{H_K} : H_K(M) = Y \land M \text{ not queried}] \]

- Pseudo random function (Prf):
 \[\text{Adv}^{\text{Prf}}_H (A) = \left| \Pr [K \leftarrow \mathcal{K}; 1 \leftarrow A^{H_K(\cdot)}] - \Pr [f \leftarrow \text{Func}(\mathcal{M}, \mathcal{Y}); 1 \leftarrow A^f] \right| \]

- Pseudo random oracle (Pro):
 \[\text{Adv}^{\text{Pro}}_{H, f, S} (A) = \left| \Pr [K \leftarrow \mathcal{K}; 1 \leftarrow A_{H_K(\cdot), f(\cdot)}(K)] - \Pr [K \leftarrow \mathcal{K}; \mathcal{F} \leftarrow \text{Func}(\mathcal{M}, \mathcal{Y}); 1 \leftarrow A^{F(\cdot), S_F(K, \cdot)}(K)] \right| \]
Relationships

- **Intuition**: $\text{xxx} \rightarrow \text{yyy} \iff (\forall H):$ if H is xxx-secure, then H is yyy-secure.

Two types of implication and separation

- Conventional
- Provisional – the strength depends on a particular hash function
 - e.g. Sec \rightarrow Pre to 2^{y-m}
 - $H : \{0, 1\}^k \times \{0, 1\}^m \rightarrow \{0, 1\}^y$
Relationships

- Intuition: \(xxx \rightarrow yyy \iff (\forall H): \) if \(H \) is \(xxx \)-secure, then \(H \) is \(yyy \)-secure.

Two types of implication and separation

- Conventional

- Provisional – the strength depends on a particular hash function

 - e.g. \(\text{Sec} \rightarrow \text{Pre} \) to \(2^{y-m} \)

 \(H: \{0, 1\}^k \times \{0, 1\}^m \rightarrow \{0, 1\}^y \)
Relationships II

- We used different, “asymptotic” definitions of implication and separation.
 - $xxx \rightarrow yyy$, if for every h.f.f. H and polynomial adversary A, that has non-negligible advantage in yyy sense there exists a polynomial adversary B with non-negligible advantage in xxx sense (against H).
- Such definitions are more “general”
- There are cases, where Rogaway and Shrimpton’s definitions do not work
- Asymptotic definitions are less precise
Result from 2008

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>aPre</th>
<th>ePre</th>
<th>Sec</th>
<th>aSec</th>
<th>eSec</th>
<th>Coll</th>
<th>MAC</th>
<th>Prf</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>✗</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>aPre</td>
<td>→</td>
<td>✗</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>ePre</td>
<td>→</td>
<td>→</td>
<td>✗</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Sec</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>✗</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>aSec</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>✗</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>eSec</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>✗</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Coll</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>✗</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Mac</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>✗</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Prf</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>✗</td>
</tr>
<tr>
<td>Pro</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Extension to CTFP

<table>
<thead>
<tr>
<th></th>
<th>CTFP</th>
<th>aCTFP</th>
<th>CTFP</th>
<th>aCTFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>aPre</td>
<td>→</td>
<td>→</td>
<td>x</td>
<td>→</td>
</tr>
<tr>
<td>ePre</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>x</td>
</tr>
<tr>
<td>Sec</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>aSec</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>eSec</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>MAC</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>CTFP</td>
<td>x</td>
<td>←</td>
<td>x</td>
<td>←</td>
</tr>
<tr>
<td>Prf</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Pro</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Coll</td>
<td>→</td>
<td>←</td>
<td>→</td>
<td>←</td>
</tr>
</tbody>
</table>
Example 1: $\text{Coll} \rightarrow \text{CTFP}$

Let $H : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{Y}$ be a hash function family

$$
\text{Adv}_{H}^{\text{CTFP}[\lambda]}(A) = \Pr \left[K \leftarrow \mathcal{K}; (Y, S) \leftarrow A(K); P \leftarrow \{0, 1\}^\lambda; M \leftarrow A(P, S) : H_K(P || M) = Y \right]
$$
Example 1: Coll → CTFP

If A succeeds in the 3rd and 5th line, then B finds a collision.

\[
P_1 \| M_1 \neq P_2 \| M_2
\]

\[
H_K(P_1 \| M_1) = H_K(P_2 \| M_2) = Y
\]
Example 2: CTFP $\not\rightarrow$ Coll

Let $H : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{Y}$ be a hash function family.

$$H'_K(M) = H_K(M[1 \ldots |M| - 1] || 0)$$

- $\forall K \in \mathcal{K} : H'_K(01) = H'_K(00)$
- H' is not Coll secure

We need to show: if H is CTFP secure, then so is H'.
Example 2: CTFP $\not\rightarrow$ Coll

Let $H : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{Y}$ be a hash function family.

$$H'_K(M) = H_K(M[1 \ldots |M| - 1] || 0)$$

- $\forall K \in \mathcal{K} : H'_K(01) = H'_K(00)$
- H' is not Coll secure

We need to show: if H is CTFP secure, then so is H'
Example 2: CTFP $\not\rightarrow$ Coll

Let $H : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{Y}$ be a hash function family.

$$H'_K(M) = H_K(M[1 \ldots |M| - 1] || 0)$$

- $\forall K \in \mathcal{K} : H'_K(01) = H'_K(00)$
- H' is not Coll secure

We need to show: if H is CTFP secure, then so is H'
Example 2: CTFP $\not\rightarrow$ Coll

Adversary B

[1st stage with input K]

$(Y, S) \leftarrow A(K)$

return $(Y, S||K)$

[2nd stage with input $(P, S||K)$]

$M \leftarrow A(P, S)$

if $H_K(P||M) = Y$ then return M

else let $b := M[|M|]$;

return $M[1\ldots|M| - 1]||\overline{b}$

- Consider that A succeeds, i.e. $H'_K(P||M) = Y$
- $H_K(P||M) = Y$ or $H_K(P||M') = Y$ ($M' = M$ but with the last bit inverted)
- Therefore B succeeds
Conclusion

- We formalize the CTFP preimage resistance in hash function family settings,
- Defined always CTFP preimage resistance,
- Worked out all the relationships among the definitions of CTFP, aCTFP and the other security notions (except those that appeared before).

Motivation:
- It is useful to know the relationships among the properties, that we want the hash function to preserve.
Conclusion

- We formalize the CTFP preimage resistance in hash function family settings,
- Defined always CTFP preimage resistance,
- Worked out all the relationships among the definitions of CTFP, aCTFP and the other security notions (except those that appeared before).

Motivation:
- It is useful to know the relationships among the properties, that we want the hash function to preserve.
The End

Thank you for your attention

and

have a nice day.